Sains Malaysiana 52(7)(2023): 2069-2093

http://doi.org/10.17576/jsm-2023-5207-14

 

Advances in the Bioregulation of Mesenchymal Stem Cells by Low-Level Laser Therapy during Bone Formation: A Narrative Review

(Kemajuan dalam Kawal Atur Sel Stem Mesenkima oleh Terapi Laser Tahap Rendah semasa Pembentukan Tulang: Kajian Naratif)

 

WANG YAN PEI1, MOHAMAD ARIF AWANG NAWI1 & NORMA AB RAHMAN2,*

 

1School of Dental Sciences, Universiti Sains Malaysia, Health Campus,16150 Kubang Kerian, Kelantan, Malaysia

2Orthodontic Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia

 

Received: 11 November 2022/Accepted: 5 July 2023

 

Abstract

This article reviews the progress of research on the modulation of the biological effects of low-level laser therapy (LLLT) on Mesenchymal stem cells (MSC) and the influence of the basic LLLT parameters and irradiation scenarios. A thorough search of the literature in the PubMed, Web of Science and Embase databases, including articles published in peer-reviewed journals, was conducted to collect relevant information on LLLT and MSCs. A comprehensive search of PubMed, Web of Science, and Embase databases was performed using the keywords "Low level laser," "mesenchymal stem cells," " cell proliferation," and "osteogenic differentiation." The search was limited to studies published in English between 2009 and 2022, including in vitro and in vivo studies. LLLT has the potential to promote MSC proliferation and osteogenic differentiation, with significant applications in bone tissue engineering. Factors that influence the biological effects of LLLT on MSC include cell type, culture medium, duration of irradiation, the frequency of laser irradiation, irradiation spot size, and type of light flux distribution. The limitations of this review include heterogeneous experimental conditions and the inability to design experiments that consider all influencing factors simultaneously.

 

Keywords: Cell proliferation; low level laser; mesenchymal stem cells; osteogenic differentiation

 

Abstrak

Artikel ini mengkaji kemajuan penyelidikan mengenai modulasi kesan biologi terapi laser peringkat rendah (LLLT) pada sel stem mesenkima (MSC) dan pengaruh parameter LLLT asas dan senario penyinaran. Pencarian teliti kepustakaan dalam pangkalan data PubMed, Web of Science dan Embase, termasuk artikel yang diterbitkan dalam jurnal semakan rakan sebaya, telah dijalankan untuk mengumpul maklumat yang berkaitan tentang LLLT dan MSC. Carian komprehensif pangkalan data PubMed, Web of Science dan Embase telah dilakukan menggunakan kata kunci ‘laser tahap rendah’, ‘sel stem mesenkima’, ‘percambahan sel’ dan ‘pembezaan osteogenik’. Pencarian terhad kepada kajian yang diterbitkan dalam bahasa Inggeris antara 2009 dan 2022, termasuk kajian in vitro dan in vivo. LLLT berpotensi untuk menggalakkan percambahan MSC dan pembezaan osteogenik dengan aplikasi penting dalam kejuruteraan tisu tulang. Faktor yang mempengaruhi kesan biologi LLLT pada MSC termasuk jenis sel, medium kultur, tempoh penyinaran, kekerapan penyinaran laser, saiz tempat penyinaran dan jenis taburan fluks cahaya. Kekangan dalam ulasan ini termasuk keadaan uji kaji heterogen dan ketidakupayaan untuk mereka bentuk uji kaji yang mempertimbangkan semua faktor yang mempengaruhi secara serentak.

 

Kata kunci: Laser tahap rendah; pembezaan osteogenik; percambahan sel; sel stem mesenkima

 

REFERENCES

Ahrabi, B., Rezaei Tavirani, M., Khoramgah, M. S., Noroozian, M., Darabi, S., Khoshsirat, S., & Abbaszadeh, H.A. 2019. The effect of photobiomodulation therapy on the differentiation, proliferation, and migration of the mesenchymal stem cell: A review. Journal of Lasers in Medical Sciences 10(Suppl. 1): S96-S103. https://doi.org/10.15171/jlms.2019.S17

Almeida-Jr., L.A., Marques, N.C.T., Prado, M.T.d.O., Oliveira, T.M. & Sakai, V.T. 2019. Effect of single and multiple doses of low-level laser therapy on viability and proliferation of stem cells from human exfoliated deciduous teeth (SHED). Lasers in Medical Science, 34(9), 1917–1924. https://doi.org/10.1007/s10103-019-02836-y

Amaroli, A., Agas, D., Laus, F., Cuteri, V., Hanna, R., Sabbieti, M.G. & Benedicenti, S.  2018. The effects of photobiomodulation of 808 nm diode laser therapy at higher fluence on the in vitro osteogenic differentiation of bone marrow stromal cells. Frontiers in Physiology 9: 123. https://doi.org/10.3389/fphys.2018.00123

Ballini, A., Mastrangelo, F., Gastaldi, G., Tettamanti, L., Bukvic, N., Cantore, S., Cocco, T., Saini, R., Desiate, A., Gherlone, E. & Scacco, S. 2015. Osteogenic differentiation and gene expression of dental pulp stem cells under low-level laser irradiation: A good promise for tissue engineering. J. Biol. Regul. Homeost. Agents 29(4): 813-822. https://europepmc.org/article/med/26753641

Blatt, A., Elbaz-Greener, G.A., Tuby, H., Maltz, L., Siman-Tov, Y., Ben-Aharon, G., Copel, L., Eisenberg, I., Efrati, S., Jonas, M., Vered, Z., Tal, S., Goitein, O. & Oron, U. 2016. Low-level laser therapy to the bone marrow reduces scarring and improves heart function post-acute myocardial infarction in the pig. Photomedicine and Laser Surgery 34(11): 516-524. https://doi.org/10.1089/pho.2015.3988

Bölükbaşı Ateş, G., Ak, A., Garipcan, B. & Gülsoy, M. 2020. Photobiomodulation effects on osteogenic differentiation of adipose-derived stem cells. Cytotechnology 72(2): 247-258. https://doi.org/10.1007/s10616-020-00374-y

Cardoso, M.V., do Vale Placa, R., Sant'Ana, A.C.P., Greghi, S.L.A., Zangrando, M.S.R., de Rezende, M.L.R., Oliveira, R.C. & Damante, C.A. 2021. Laser and LED photobiomodulation effects in osteogenic or regular medium on rat calvaria osteoblasts obtained by newly forming bone technique. Lasers in Medical Science 36(3): 541-553. https://doi.org/10.1007/s10103-020-03056-5

Cavalcanti, M.F.X.B., Maria, D.A., de Isla, N., Leal-Junior, E.C.P., Joensen, J., Bjordal, J.M., Lopes-Martins, R.A.M.B., Diomede, F., Trubiani, O. & Frigo, L. 2015. Evaluation of the proliferative effects induced by low-level laser therapy in bone marrow stem cell culture. Photomedicine and Laser Surgery 33(12): 610-616. https://doi.org/10.1089/pho.2014.3864

de Andrade, A.L.M., Luna, G.F., Brassolatti, P., Leite, M.N., Parisi, J.R., de Oliveira Leal, Â.M., Frade, M.A.C., de Freitas Anibal, F. & Parizotto, N.A. 2019. Photobiomodulation effect on the proliferation of adipose tissue mesenchymal stem cells. Lasers in Medical Science 34(4): 677-683. https://doi.org/10.1007/s10103-018-2642-2

de Villiers, J.A., Houreld, N.N. & Abrahamse, H. 2011. Influence of low intensity laser irradiation on isolated human adipose derived stem cells over 72 hours and their differentiation potential into smooth muscle cells using retinoic acid. Stem Cell Reviews and Reports 7(4): 869-882. https://doi.org/10.1007/s12015-011-9244-8

Fageeh, H.N. 2021. Preliminary evaluation of proliferation, wound healing properties, osteogenic and chondrogenic potential of dental pulp stem cells obtained from healthy and periodontitis affected teeth. Cells 10(8): 2118. https://doi.org/10.3390/cells10082118

Fallahnezhad, S., Jajarmi, V., Shahnavaz, S., Amini, A., Ghoreishi, S.K., Kazemi, M., Chien, S. & Bayat, M. 2020. Improvement in viability and mineralization of osteoporotic bone marrow mesenchymal stem cell through combined application of photobiomodulation therapy and oxytocin. Lasers in Medical Science 35(3): 557-566. https://doi.org/10.1007/s10103-019-02848-8

Fallahnezhad, S., Piryaei, A., Tabeie, F., Nazarian, H., Darbandi, H., Amini, A., Mostafavinia, A., Ghorishi, S.K., Jalalifirouzkouhi, A. & Bayat, M. 2016. Low-level laser therapy with helium-neon laser improved viability of osteoporotic bone marrow-derived mesenchymal stem cells from ovariectomy-induced osteoporotic rats. Journal of Biomedical Optics 21(9): 98002. https://doi.org/10.1117/1.JBO.21.9.098002

Fekrazad, R., Asefi, S., Eslaminejad, M.B., Taghiar, L., Bordbar, S. & Hamblin, M.R. 2019. Photobiomodulation with single and combination laser wavelengths on bone marrow mesenchymal stem cells: Proliferation and differentiation to bone or cartilage. Lasers in Medical Science 34(1): 115-126. https://doi.org/10.1007/s10103-018-2620-8

Ferreira, L.S., Diniz, I.M.A., Maranduba, C.M.S., Miyagi, S.P.H., Rodrigues, M.F.S.D., Moura-Netto, C. & Marques, M.M. 2019. Short-term evaluation of photobiomodulation therapy on the proliferation and undifferentiated status of dental pulp stem cells. Lasers in Medical Science 34(4): 659-666. https://doi.org/10.1007/s10103-018-2637-z

Gether, U. 2000. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocrine Reviews 21(1): 90-113. https://doi.org/10.1210/edrv.21.1.0390

Han, Y., Li, X., Zhang, Y., Han, Y., Chang, F. & Ding, J. 2019. Mesenchymal stem cells for regenerative medicine. Cells 8(8): 886. https://doi.org/10.3390/cells8080886

Hanna, R., Agas, D., Benedicenti, S., Ferrando, S., Laus, F., Cuteri, V., Lacava, G., Sabbieti, M.G. & Amaroli, A. 2019. A comparative study between the effectiveness of 980 nm photobiomodulation delivered by hand-piece with Gaussian vs. flat-top profiles on osteoblasts maturation. Frontiers in Endocrinology 10: 92. https://doi.org/10.3389/fendo.2019.00092

Horvát-Karajz, K., Balogh, Z., Kovács, V., Drrernat, A.H., Sréter, L. & Uher, F. 2009. In vitro effect of carboplatin, cytarabine, paclitaxel, vincristine, and low-power laser irradiation on murine mesenchymal stem cells. Lasers in Surgery and Medicine 41(6): 463-469. https://doi.org/10.1002/lsm.20791

Li, W.T., Chen, C.W. & Huang, P.Y. 2013. Effects of low level light irradiation on the migration of mesenchymal stem cells derived from rat bone marrow. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. pp. 4121-4124. https://doi.org/10.1109/EMBC.2013.6610452

Marques, M.M., Diniz, I.M.A., de Cara, S.P.H.M., Pedroni, A.C.F., Abe, G.L., D'Almeida-Couto, R.S., Lima, P.L.V., Tedesco, T.K. & Moreira, M.S. 2016. Photobiomodulation of dental derived mesenchymal stem cells: A systematic review. Photomedicine and Laser Surgery 34(11): 500-508. https://doi.org/10.1089/pho.2015.4038

Merigo, E., Bouvet-Gerbettaz, S., Boukhechba, F., Rocca, J.P., Fornaini, C. & Rochet, N. 2016. Green laser light irradiation enhances differentiation and matrix mineralization of osteogenic cells. Journal of Photochemistry and Photobiology. B, Biology 155: 130-136. https://doi.org/10.1016/j.jphotobiol.2015.12.005

Mester, E., Szende, B. & Gärtner, P. 1968. The effect of laser beams on the growth of hair in mice. Radiobiologia, Radiotherapia 9(5): 621-626. https://europepmc.org/article/med/5732466

Migliario, M., Sabbatini, M., Mortellaro, C. & Renò, F. 2018. Near infrared low-level laser therapy and cell proliferation: The emerging role of redox sensitive signal transduction pathways. Journal of Biophotonics 11(11): e201800025. https://doi.org/10.1002/jbio.201800025

Min, K.H., Byun, J.H., Heo, C.Y., Kim, E.H., Choi, H.Y. & Pak, C.S. 2015. Effect of low-level laser therapy on human adipose-derived stem cells: in vitro and in vivo studies. Aesthetic Plastic Surgery 39(5): 778-782. https://doi.org/10.1007/s00266-015-0524-6

Nandy, S.B., Mohanty, S., Singh, M., Behari, M. & Airan, B. 2014. Fibroblast growth factor-2 alone as an efficient inducer for differentiation of human bone marrow mesenchymal stem cells into dopaminergic neurons. Journal of Biomedical Science 21(1): 83. https://doi.org/10.1186/s12929-014-0083-1

Nurković, J., Zaletel, I., Nurković, S., Hajrović, Š., Mustafić, F., Isma, J., Škevin, A.J., Grbović, V., Filipović, M.K. & Dolićanin, Z. 2017. Combined effects of electromagnetic field and low-level laser increase proliferation and alter the morphology of human adipose tissue-derived mesenchymal stem cells. Lasers in Medical Science 32(1): 151-160. https://doi.org/10.1007/s10103-016-2097-2

Pasternak-Mnich, K., Ziemba, B., Szwed, A., Kopacz, K., Synder, M., Bryszewska, M. & Kujawa, J. 2019. Effect of photobiomodulation therapy on the increase of viability and proliferation of human mesenchymal stem cells. Lasers in Surgery and Medicine 51(9): 824-833. https://doi.org/10.1002/lsm.23107

Peng, F., Wu, H., Zheng, Y., Xu, X. & Yu, J. 2012. The effect of noncoherent red light irradiation on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Lasers in Medical Science 27(3): 645-653. https://doi.org/10.1007/s10103-011-1005-z

Ruan, Y., Kato, H., Taguchi, Y., Yamauchi, N. & Umeda, M. 2021. Irradiation by high-intensity red light-emitting diode enhances human bone marrow mesenchymal stem cells osteogenic differentiation and mineralization through Wnt/β-catenin signaling pathway. Lasers in Medical Science 36(1): 55-65. https://doi.org/10.1007/s10103-020-03002-5

Serrage, H., Heiskanen, V., Palin, W.M., Cooper, P.R., Milward, M.R., Hadis, M. & Hamblin, M.R. 2019. Under the spotlight: Mechanisms of photobiomodulation concentrating on blue and green light. Photochemical & Photobiological Sciences 18(8): 1877-1909. https://doi.org/10.1039/c9pp00089e

Syed-Picard, F.N., Du, Y., Lathrop, K.L., Mann, M.M., Funderburgh, M.L. & Funderburgh, J.L. 2015. Dental pulp stem cells: A new cellular resource for corneal stromal regeneration. Stem Cells Translational Medicine 4(3): 276-285. https://doi.org/10.5966/sctm.2014-0115

Tani, A., Chellini, F., Giannelli, M., Nosi, D., Zecchi-Orlandini, S. & Sassoli, C. 2018. Red (635 nm), near-infrared (808 nm) and violet-blue (405 nm) photobiomodulation potentiality on human osteoblasts and mesenchymal stromal cells: A morphological and molecular in vitro study. International Journal of Molecular Sciences 19(7): 1946. https://doi.org/10.3390/ijms19071946

Tsai, P.J., Wang, H.S., Lin, C.H., Weng, Z.C., Chen, T.H. & Shyu, J.F. 2014. Intraportal injection of insulin-producing cells generated from human bone marrow mesenchymal stem cells decreases blood glucose level in diabetic rats. Endocrine Research 39(1): 26-33. https://doi.org/10.3109/07435800.2013.797432

Wang, L., Wu, F., Liu, C., Song, Y., Guo, J., Yang, Y. & Qiu, Y. 2019. Low-level laser irradiation modulates the proliferation and the osteogenic differentiation of bone marrow mesenchymal stem cells under healthy and inflammatory condition. Lasers in Medical Science 34(1): 169-178. https://doi.org/10.1007/s10103-018-2673-8

Wang, Y., Huang, Y.Y., Wang, Y., Lyu, P. & Hamblin, M.R. 2017a. Photobiomodulation of human adipose-derived stem cells using 810nm and 980nm lasers operates via different mechanisms of action. Biochimica Et Biophysica Acta. General Subjects 1861(2): 441-449. https://doi.org/10.1016/j.bbagen.2016.10.008

Wang, Y., Huang, Y.Y., Wang, Y., Lyu, P. & Hamblin, M.R. 2017b. Red (660 nm) or near-infrared (810 nm) photobiomodulation stimulates, while blue (415 nm), green (540 nm) light inhibits proliferation in human adipose-derived stem cells. Scientific Reports 7(1): 7781. https://doi.org/10.1038/s41598-017-07525-w

Wu, J.Y., Chen, C.H., Yeh, L.Y., Yeh, M.L., Ting, C.C. & Wang, Y.H. 2013. Low-power laser irradiation promotes the proliferation and osteogenic differentiation of human periodontal ligament cells via cyclic adenosine monophosphate. International Journal of Oral Science 5(2): 85-91. https://doi.org/10.1038/ijos.2013.38

Yang, D., Yi, W., Wang, E. & Wang, M. 2016. Effects of light-emitting diode irradiation on the osteogenesis of human umbilical cord mesenchymal stem cells in vitro. Scientific Reports 6: 37370. https://doi.org/10.1038/srep37370

Yang, Y., Zhu, T., Wu, Y., Shu, C., Chen, Q., Yang, J., Luo, X. & Wang, Y. 2020. Irradiation with blue light-emitting diode enhances osteogenic differentiation of stem cells from the apical papilla. Lasers in Medical Science 35(9): 1981-1988. https://doi.org/10.1007/s10103-020-02995-3

Yin, K., Zhu, R., Wang, S. & Zhao, R.C. 2017. Low-level laser effect on proliferation, migration, and antiapoptosis of mesenchymal stem cells. Stem Cells and Development 26(10): 762-775. https://doi.org/10.1089/scd.2016.0332

Yuan, Y., Yan, G., Gong, R., Zhang, L., Liu, T., Feng, C., Du, W., Wang, Y., Yang, F., Li, Y., Guo, S., Ding, F., Ma, W., Idiiatullina, E., Pavlov, V., Han, Z., Cai, B. & Yang, L.  2017. Effects of blue light emitting diode irradiation on the proliferation, apoptosis and differentiation of bone marrow-derived mesenchymal stem cells. Cellular Physiology and Biochemistry 43(1): 237-246. https://doi.org/10.1159/000480344

Zare, F., Bayat, M., Aliaghaei, A. & Piryaei, A. 2020. Photobiomodulation therapy compensate the impairments of diabetic bone marrow mesenchymal stem cells. Lasers in Medical Science 35(3): 547-556. https://doi.org/10.1007/s10103-019-02844-y

Zare, F., Moradi, A., Fallahnezhad, S., Ghoreishi, S.K., Amini, A., Chien, S. & Bayat, M.  2019. Photobiomodulation with 630 plus 810 nm wavelengths induce more in vitro cell viability of human adipose stem cells than human bone marrow-derived stem cells. Journal of Photochemistry and Photobiology B: Biology 201: 111658. https://doi.org/10.1016/j.jphotobiol.2019.111658

Zecha, J.A.E.M., Raber-Durlacher, J.E., Nair, R.G., Epstein, J.B., Sonis, S.T., Elad, S., Hamblin, M.R., Barasch, A., Migliorati, C.A., Milstein, D.M.J., Genot, M.T., Lansaat, L., van der Brink, R., Arnabat-Dominguez, J., van der Molen, L., Jacobi, I., van Diessen, J., de Lange, J., Smeele, L.E., Schubert, M.M. & Bensadoun, R.J. 2016. Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: Part 1: Mechanisms of action, dosimetric, and safety considerations. Supportive Care in Cancer: Official Journal of the Multinational Association of Supportive Care in Cancer 24(6): 2781-2792. https://doi.org/10.1007/s00520-016-3152-z

Zein, R., Selting, W. & Hamblin, M.R. 2018. Review of light parameters and photobiomodulation efficacy: Dive into complexity. Journal of Biomedical Optics 23(12): 1-17. https://doi.org/10.1117/1.JBO.23.12.120901

Zhang, R.F., Wang, Q., Zhang, A.A., Xu, J.G., Zhai, L.D., Yang, X.M. & Liu, X.T. 2018. Low-level laser irradiation promotes the differentiation of bone marrow stromal cells into osteoblasts through the APN/Wnt/β-catenin pathway. European Review for Medical and Pharmacological Sciences 22(9): 2860-2868. https://doi.org/10.26355/eurrev_201805_14988

Zhu, T., Wu, Y., Zhou, X., Yang, Y. & Wang, Y. 2019. Irradiation by blue light-emitting diode enhances osteogenic differentiation in gingival mesenchymal stem cells in vitro. Lasers in Medical Science 34(7): 1473-1481. https://doi.org/10.1007/s10103-019-02750-3

Zungu, I.L., Hawkins Evans, D. & Abrahamse, H. 2009. Mitochondrial responses of normal and injured human skin fibroblasts following low level laser irradiation--an in vitro study. Photochemistry and Photobiology 85(4): 987-996. https://doi.org/10.1111/j.1751-1097.2008.00523.x

 

*Corresponding author; email: drnorma@usm.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous